

Wei Li, Tsai-Jung Liu

DFT Methods for van der Waals Interactions

SPP 2244

Chemnitz // 18 April 2023

How accurate are DFT calculations?

- $E_{\text{DFT}}[\rho] = T_{\text{S}}[\rho] + \int d\boldsymbol{r} \, v_{ext}(\boldsymbol{r})\rho(\boldsymbol{r}) + E_{\text{H}}[\rho] + E_{\text{xc}}[\rho]$
- Excited states

...

- Self-interaction error
- Local and semi-local XC

DRESDEN concep

Short- and long-range correlation in DFT

Choosing a functional

Models for vdW interaction

Coarse-graining

Fragment-based pairwise methods

London dispersion

•
$$V_{dispersion} = -\frac{C}{r_6}$$

• Add an empirical damped dispersion

•
$$E_{DFT-D} = E_{DFT} + S \sum_{i \neq j} \frac{c_{ij}}{r_{ij}^6} f_{damp}(r_{ij})$$

empirical parameter

Including DFT-Dn, XDM, TS...

Nonlocal vdW Density Functionals

Dispersion correction affects density

DRESDEN

F. Tran, L. Kalantari, B. Traoré, X. Rocquefelte, P. Blaha, *Phys. Rev. Materials* **2019**, *3*, 063602.

What is random phase approximation (RPA)?

The concept of RPA

Two kinds of response of the electrons to a wave

- In phase with the wave
 - position-independent
 - behavior of the system
- A phase difference with the wave
 - position-dependent
 - random location of the particles -> response to zero

RPA correlation energy

• With the framework of adiabatic-connection fluctuation-dissipation (ACFD) theorem:

$$E_{C} = -\frac{1}{2\pi} \int_{0}^{\infty} du \operatorname{Tr} \left[\ln \left(1 - \chi_{0}(\boldsymbol{r}, \boldsymbol{r}', u) v(\boldsymbol{r}, \boldsymbol{r}') \right) - \chi_{0}(\boldsymbol{r}, \boldsymbol{r}', u) v(\boldsymbol{r}, \boldsymbol{r}') \right]$$
Density response function
Coulomb interaction

- RPA captures the non-local coupling between spontaneous quantum charge fluctuations separated in space.
- If you're interested, you may check:
 - Langreth & Perdew, *Phys. Rev. B* **1977**, 15, 2884.
 - Gunnarsson & Lundqvist, *Phys. Rev. B* **1976**, 13, 4274.
 - XR, P. Rinke, C. Joas, and M. Scheffler, *J. Mater. Sci.* **2012**, 47, 7447.

...

RPA calculations in practice

 RPA is most often carried out as a single-point post-SCF approach, based on references from a preceding semi-local (or hybrid) calculation.

> $E^{\text{RPA}} = \langle \phi_0 | \hat{H} | \phi_0 \rangle + E_c^{\text{RPA}} [\epsilon_n, \psi_n]$ Hartree-Fock energy

 \in_n , ψ_n : (generalized) KS orbitals and orbital energies ϕ_0 : Slater determinant formed with occupied ψ_i

 RPA results show a slight dependence on the starting point, denoted e.g., by "RPA@PBE".

Coarse-grained MBD based on RPA and TS

- Shortcomings in TS approach
 - Only pairwise interactions
 - Only the local electron density for polarizability
- Many-body dispersion
 - Many-body interaction
 - Long-range screening effects
 - Using model response functions in ACFD-RPA
 - MBD@rsSCS(/FI), MBD-NL
 - More details:
 - A. Tkatchenko, R. DiStasio, R. Car, and M. Scheffler, *Phys. Rev. Lett.* 2012, 108, 236402
 - J. Hermann, A. Tkatchenko, *Phys. Rev. Lett.* **2020**, 124, 146401.

Only interlayer potential

+ intralayer potential

Tight-Binding (TB) Approach

Conjugated System

- π -electron
- One-site-one-orbital model

Periodic version of "Hückel model" ...

$$H = \sum_{i} \alpha_{i} c_{i}^{\dagger} c_{i} + \sum_{\langle i,j \rangle} \beta_{1} c_{i}^{\dagger} c_{j} + \sum_{\langle \langle i,j \rangle \rangle} \beta_{2} c_{i}^{\dagger} c_{j} + H_{\text{SOC}}$$

	1	2	•••	Ν
1	Γα	β_i		
2	β_i	•.	• • • •	
•			•.	
N				α

$$\begin{array}{ccc} A & B \\ A & \left[\begin{array}{c} \alpha & \beta_1 + \cdots \\ \beta_1 + \cdots & \alpha \end{array} \right] \end{array}$$

 parameters???
 fit parameters from the other method?

 dftb slako parameters? (carbon, ppπ)

How about having a second layer?

It's still a matter of how to fill the matrix, and what parameters to use...

How about having a second layer?

X. Lin; D. Tománek; Phys. Rev. B, 2018, 98, 081410

DFT and DFTB

The effect is not included in the equation!!

Dispersion Correction

Empirical correction for London dispersion

$$E_{\text{total}} = E_{\text{DFT/DFTB}} + E_{\text{disp}}$$

Options:

- **Options:** Lennard-Jones \longrightarrow $U_{ij}(r) = d_{ij} \left[-2 \left(\frac{r_{ij}}{r} \right)^6 + \left(\frac{r_{ij}}{r} \right)^{12} \right], r \ge r_0$ \longrightarrow parameter from UFF $U_{ij}(r) = U_0 + U_1 r^5 + U_2 r^{10}, r < r_0$
- Grimme's correction (Dn)
- Tkatchenko-Scheffler model (TS)

Fragment-based pairwise methods

- many-body dispersion (Mbd)
- etc...

Fragment-based pairwise methods

Grimme's correction (Dn)
 Parameters differ in different methods!!

D2:
$$E_{\text{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{L}' \left(\frac{C_{6ij}}{r_{ij,L}^6} \right) f_{d,6}(r_{ij,L}) + \left(\frac{C_{8ij}}{r_{ij,L}^8} \right) f_{d,8}(r_{ij,L}) + \left(\frac{C_{10ij}}{r_{ij,L}^{10}} \right) f_{d,10}(r_{ij,L}) + E^{(3)}$$

$$(D3BJ \rightarrow \text{Becke-Johnson damping}) \qquad (3-\text{body term})$$

$$\left(\frac{C_{nij}}{r_{ij,L}^n + f_{d,n}(r_{ij,L})} \right)$$

Tkatchenko-Scheffler model (TS)

similar idea but different expressing for C₆ and damping term

Short Summary

- Force Field: direct term E_{vdw}
- Tight-Binding: add hoppings for interlayer sites

β_{inter} β_{intra}

• DFTB/DFT:

		many-body dispersion	random-phase approximation			
Method	lons/ Oxidation				DFT Package	
Grimme	separate param			molecules	Vasp, Crystal, AMS, QE, QATK	
TS	Yes (strong char needs paramete			molecules	FHI-aims, Vasp, QE	
Mbd	Yes (strong char needs paramete	interatomic pairwise methods	nonlocal density functionals	e tals	FHI-aims, Vasp, ADF, QE	
vdW-DFn	Yes		* *	nd bulk solids,	FHI-aims, Vasp, QE, QATK	
			X	nge functional		
VV10	Yes	•		molecules	Vasp, AMS	
RPA	Yes			ē	FHI-aims, Vasp, AMS, QATK	

Questions?

Backup: geometry optimization in Force-field method

Backup: 3-body term in D4 method

$$E_{\text{disp}} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{L}' \left(\frac{C_{6ij}}{r_{ij,L}^6} \right) f_{d,6}(r_{ij,L}) + \left(\frac{C_{8ij}}{r_{ij,L}^8} \right) f_{d,8}(r_{ij,L}) + \left(\frac{C_{10ij}}{r_{ij,L}^{10}} \right) f_{d,10}(r_{ij,L}) + E^{(3)}$$

$$E^{(3)} = -\frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j=1}^{N_{at}} \sum_{k=1}^{N_{at}} s_9 \frac{(3\cos\theta_i\cos\theta_j\cos\theta_k + 1)\sqrt{C_{6ij}C_{6ik}C_{6jk}}}{(r_{ij}r_{ik}r_{jk})^3} f^{(3)}(r_{ij})$$

Backup: functional

Level	Name	Variables	Examples
1	Local density	ρ	LDA, LSDA, X_{α}
2	GGA	$\rho, \nabla \rho$	BLYP, OPTX, OLYP, PW86, PW91, PBE, HCTH
3	Meta-GGA	$ ho, abla ho, abla^2 ho$ or $ au$	BR, B95, VSXC, PKZB, TPSS, τ -HCTH
4	Hyper-GGA	$\rho, \nabla \rho, \nabla^2 \rho \text{ or } \tau$ <i>HF exchange</i>	H+H, ACM, B3LYP, B3PW91, O3LYP, PBE0, TPSSh, <i>τ</i> -HCTH-hybrid
5	Generalized RPA	$\rho, \nabla \rho, \nabla^2 \rho \text{ or } \tau$ <i>HF exchange</i> <i>Virtual orbitals</i>	OEP2

Table 6.1 Perdew classification of exchange-correlation functionals

Method ^a	Hybridization, coordin chemical environr	ation and nent Ions/oxidation	Accuracy of C ₆ coefficients of sm a states organic molecules		fficients of small olecules	Polarization in materials	Nonadditive polarizability
D1/D2	No	No		20%		No	No
D3	Only coord. effe	ects Requires separate para	metrization	5-10	1%	No	No
XDM	Yes	Yes, but strong charge requires parametrizat	e transfer tion	12%		No	Short-range
TS	Yes	Yes, but strong charge requires parametrizat	e transfer tion	5.5%		No	Short-range
MBD	Yes	Yes, but strong charge requires parametrizat	e transfer tion	6.2%		Yes	All ranges
vdW-DF1	Yes	Yes		20%		No	Short-range
vdW-DF2	Yes	Yes		60%		No	Short-range
VV10	Yes	Yes		12%		No	Short-range
RPA	Yes	Yes		10%		Yes	All ranges
Method	Anisotropy in vdW parameters	Many-body vdW energy	Computationa cost	l Amount of fitting		Applicability	
D1/D2	No	No	Very low	High	Small molecules		
D3	No	Three-body Axilrod–Teller can be added	Very low	Intermediate	Small and midsi	ze molecules	
XDM	No	Three-body Axilrod—Teller can be added	Low	Low	Small and midsize molecules		
TS	No	Three-body Axilrod–Teller can be added	Low	Low	Small and midsize molecules		
MBD	Yes	Infinite order	Low	Low	Broadly applicable. Take care with metals		metals
vdW-DF1	No	No	Intermediate	None	Small molecules and bulk solids, sensitive to exchange functional		ensitive to
vdW-DF2	No	No	Intermediate	Low	Small molecules and bulk solids, sensitive to exchange functional		ensitive to
VV10	No	No	Intermediate	Low	Small and midsi	ze molecules	
dRPA	Yes	Infinite order	High	None	Broadly applicab	ole	

Table 1. Approximate vdW Methods in Terms of Their General Properties and the Degree to Which They Incorporate Some Effects Influencing vdW Interactions

Backup: Coarse-grained MBD based on RPA and TS

