

<u>Wei Li</u>, Thomas Brumme, Thomas Heine Chair of Theoretical Chemistry, TU Dresden **Relaxation effects in twisted transition metal dichalcogenide heterostructures**

June 29, 2023 // Manchester

Why twisted: Moiré

Florian Arnold. (July 5, 2022). Moiré clocks (Video File). Retrieved from https://www.youtube.com/watch?v=uxoKzBPFbrs&list=PL2LyfOO_UvEx5pfK mWlii_hmRBmZwJVG6&index=16.

Relaxation effects

Experimental observation: atomic reconstructions

Twisted bilayer MoS₂^[1]

Bilayer MoS₂ at $\theta = 0.3^{\circ[2]}$

[1] Nat. Comm., **2022**, 13, 3898.
[2] Nat. Nanotechnol., **2020**, 15, 592.

Unrelaxed MoS₂/MoSe₂ at 0°

Fig 1. (a) 3 high-symmetry stackings and transition stacking regions. (b) Interlayer distance and binding energy of corresponding high-symmetry stackings.

Relaxed MoS₂/MoSe₂ at 0°

d (Å)

- Out-of-plane displacement Z_{ML}
- Average Out-of-plane displacement \bar{Z}_{ML}
- Interlayer distance d

Lattice reconstruction and corrugation

Strain energy and vdW energy

Twisted MoS₂/MoSe₂ and MoS₂/WS₂

 $\bigcirc R_h^h \bigvee R_h^M \bigwedge R_h^X$

 \bigcirc H_h^M \bigcirc H_h^h \bigwedge H_h^X

Small vs. large twist angles in MoS₂/WS₂

 Fig 1. (a) Out-of-plane corrugation of Mo along diagonal direction, (b) magnitude of corrugation of in each layer, (c) binding/strain energy at different twist angles.

Spin-Orbit Coupling effect

Summary

- Significant lattice reconstruction
 - Domain formation

Strain energy cost and van der Waals energy gain

Acknowledgement

- Prof. Dr. Thomas Heine
- Dr. Thomas Brumme
- M.Sc. Gautam Jha
- M.Sc. Florian Arnold
- ThC group
- 2EXCITING network

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956813 12 DRESDEN concept

How: Multiscale approach

- Geometry optimization performed by Force-Field^{[1][2]}
- Electronic properties calculated by DFTB^[3]
- Force-Field validated by DFT

- Lattice size: 10¹ 10³ Å
- Number of atoms: 50 5×10⁵

[1] J. Appl. Phys. 2013, 114, 064307.

[2] J. Phys. Chem. C **2019**, 123, 9770.

[3] J. Chem. Theory Comput. **2022**, 18, 4472.

Generating models

$$\begin{bmatrix} \tilde{a}_{1}^{T} \\ \tilde{a}_{2}^{T} \end{bmatrix} = M_{a} \begin{bmatrix} a_{1}^{T} \\ a_{2}^{T} \end{bmatrix}, \begin{bmatrix} \tilde{b}_{1}^{T} \\ \tilde{b}_{2}^{T} \end{bmatrix} = RM_{b} \begin{bmatrix} b_{1}^{T} \\ b_{2}^{T} \end{bmatrix}$$

$$\blacksquare \text{ Hexagonal symmetry}$$

$$M_{j} = \begin{bmatrix} p_{j} & q_{j} \\ -q_{j} & p_{j} - q_{j} \end{bmatrix}$$

$$\blacksquare \text{ Coincidence}$$

$$|\tilde{a}_{i} - \tilde{b}_{i}| < tolerance$$

Geometry optimization: Force-field method

Computational details

- Geometry optimisation:
 - Conjugate gradient method in LAMMPS
- Single point calculations (DFT):
 - GGA-PBE/TS in FHI-aims
- Single point calculations (DFTB):
 - SCC-DFTB theory level in DFTB+
 - QUASINANO2013 Slater-Koster parameters
 - Monkhorst Pack k-space

Boundary condition: flake

Unrelaxed MoS₂/MoSe₂ at 60°

Fig 1. (a) 3 high-symmetry stackings and transition stacking regions. (b) Interlayer distance and binging energy of corresponding high-symmetry stackings.

Backup

 Fig 1. Interlayer distance and binding energy of high-symmetry stackings of MoS₂/WS₂

