

Wei Li, Gautam Jha, Thomas Brumme, Thomas Heine

Chair of Theoretical Chemistry, TU Dresden

Relaxation effects in twisted transition metal dichalcogenide heterostructures

Sep 25, 2023 // Prague

Why twisted: Moiré

Florian Arnold. (July 5, 2022). Moiré clocks (Video File). Retrieved from https://www.youtube.com/watch?v=uxoKzBPFbrs&list=PL2LyfOO_UvEx5pfK mWlii_hmRBmZwJVG6&index=16.

Why TMDC heterostructures?

(a) Different types of vdWH band structures.^[1] (b) Excitonic behavior in Type-II alignment vdWH.^[2]

[1] Nat. Phys. **2021**, 17, 92. [2] J. Phys. D: Appl. Phys. **2021**, 54, 053001.

How: Multiscale approach

- Geometry optimization performed by Force-Field^{[1][2]}
- Electronic properties calculated by DFTB^[3]

- Lattice size: $10^1 10^3 \text{ Å}$
- Number of atoms: $50 5 \times 10^5$

[1] J. Appl. Phys. 2013, 114, 064307. [2] J. Phys. Chem. C 2019, 123, 9770. [3] J. Chem. Theory Comput. 2022, 18, 4472.

concept

R-type stackings – Unrelaxed MoS₂/MoSe₂ at 0°

(a) 3 high-symmetry stackings and transition stacking regions. (b) Interlayer distance and binging energy of corresponding high-symmetry stackings.

Relaxed MoS₂/MoSe₂ at 0°

MoS₂/MoSe₂ and MoS₂/WS₂ at small twist angles

Small vs. large twist angles in MoS₂/WS₂

• (a) Out-of-plane corrugation of Mo. (b) Magnitude of corrugation of each layer.

 MoS_2/WS_2 at 2.5° and 3.5°

MoS₂/WS₂ at 57.5° and 56.5°

Summary

- Significant lattice reconstruction
 - Domain formation

Out-of-plane corrugation

- Depending on the twist angle
- Corrugation-dependent spin orbital coupling effect

Acknowledgement

- Prof. Dr. Thomas Heine
- Dr. Thomas Brumme
- M.Sc. Gautam Jha
- Antje Völkel
- Dr. Nina Vankova
- Dr. Lyuben Zhechkov
- DP Knut Vietze
- ThC group
- Prof. Paulina Płochocka's group
- All the members in 2EXCITING network

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956813

Small vs. large twist angles in MoS₂/WS₂

• (a) Out-of-plane corrugation of Mo. (b) Magnitude of corrugation of each layer.

Small vs. large twist angles in MoS₂/WS₂

 (a) Out-of-plane corrugation of Mo along diagonal direction, (b) magnitude of corrugation of in each layer

Backup: Force-field method

Backup: DFTB

$E_{\rm DFTB}[\rho_0 + \delta\rho] = E^0[\rho_0] + E^1[\rho_0, \delta\rho] + E^2[\rho_0, (\delta\rho)^2]$ $+ E^3[\rho_0, (\delta\rho)^3]$

Backup: Flakes

Backup: MoS₂/WS₂ at 2.5°

Backup: MoS₂/WS₂ at 2.5°

Backup: optical selection rules

