

Wei Li, Gautam Jha, Thomas Brumme, Thomas Heine

Chair of Theoretical Chemistry, TU Dresden

Modulation of optical selection rules in twisted transition metal dichalcogenide heterobilayer

Mar 06, 2024 // Minneapolis

Why TMDC heterostructures?

(a) Different types of vdWH band structures.^[1] (b) Excitonic behavior in Type-II alignment vdWH.^[2]

[1] Nat. Phys. **2021**, 17, 92. [2] J. Phys. D: Appl. Phys. **2021**, 54, 053001.

How: Multiscale approach

- Geometry optimization performed by Force-Field^{[1][2]}
- Electronic properties calculated by DFTB^[3]

- Lattice size: 10¹ 10³ Å
- Number of atoms: 50 5×10⁵

[1] J. Appl. Phys. 2013, 114, 064307.
[2] J. Phys. Chem. C 2019, 123, 9770.
[3] J. Chem. Theory Comput. 2022, 18, 4472.

R-type stackings – MoS₂/MoSe₂ at 0°

R-type stackings – MoS₂/MoSe₂ at 0°

MoS₂/MoSe₂ at different twist angles

(a) Magnitude of corrugation of each layer. (b) Area of domains and node

MoS₂/WS₂ at different twist angles

(a) Magnitude of corrugation of each layer. (b) Area of domains and node

Theory vs experiment

MoS₂/MoSe₂ flake systems

The effects of flake size on (a) twist angles and (b,c) moiré superlattice constant upon relaxation

W Li, T Brumme, T Heine. Relaxation effects in transition metal dichalcogenide bilayer heterostructures. *npj 2D Mater. Appl.* (under revision)

9 DRESDEN concept

MoS₂/WS₂ at 3°: Spin, angular momentum and g-factors

10 DRESDEN concept

MoS₂/WS₂ at 3° : Spin, angular momentum and g-factors

R-type stacking		
g ^{HS}	-1.2	2.78
transition	$V \rightarrow C$	$V \rightarrow C+1$
spin	↑↓	$\uparrow\uparrow$
ΔL	1.39	1.39

MoS₂/WS₂ at 57° : Spin, angular momentum and g-factors

H-type stacking		
g ^{HS}	-2.28	1.7
transition	$V \rightarrow C$	$V \rightarrow C+1$
spin	↑↓	$\uparrow\uparrow$
ΔL	-1.14	-1.14

Summary

- Significant lattice reconstruction
 - Domain formation
 - Out-of-plane corrugation

Commensurate vs incommensurate model

• Spin orbital coupling effect and exciton g-factor

Acknowledgement

- Dr. Gautam Jha
- Dr. Thomas Brumme
- Prof. Dr. Thomas Heine

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956813

14 DRESDEN Concept

THANK YOU

R-type stackings – Relaxed $MoS_2/MoSe_2$ at 0° and 6.6 °

Backup: MoS₂/MoSe₂ and MoS₂/WS₂ at small twist angles

Backup: Force-field method

Backup: DFTB

$E_{\rm DFTB}[\rho_0 + \delta\rho] = E^0[\rho_0] + E^1[\rho_0, \delta\rho] + E^2[\rho_0, (\delta\rho)^2]$ $+ E^3[\rho_0, (\delta\rho)^3]$

Backup: MoS₂/WS₂ at 2.5°

